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CHAPTER 20

Selfish Load Balancing

Berthold Vöcking

Abstract

Suppose that a set of weighted tasks shall be assigned to a set of machines with possibly different
speeds such that the load is distributed evenly among the machines. In computer science, this problem
is traditionally treated as an optimization problem. One of the classical objectives is to minimize the
makespan, i.e., the maximum load over all machines. Here we study a natural game theoretic variant
of this problem: We assume that the tasks are managed by selfish agents, i.e., each task has an agent
that aims at placing the task on the machine with smallest load. We study the Nash equilibria of this
game and compare them with optimal solutions with respect to the makespan. The ratio between the
worst-case makespan in a Nash equilibrium and the optimal makespan is called the price of anarchy.
In this chapter, we study the price of anarchy for such load balancing games in four different variants,
and we investigate the complexity of computing equilibria.

20.1 Introduction

The problem of load balancing is fundamental to networks and distributed systems.
Whenever a set of tasks should be executed on a set of resources, one needs to balance
the load among the resources in order to exploit the available resources efficiently.
Often also fairness aspects have to be taken into account. Load balancing has been
studied extensively and in many variants. One of the most fundamental load balancing
problems is makespan scheduling on uniformly related machines. This problem is
defined by m machines with speeds s1, . . . , sm and n tasks with weights w1, . . . , wn.
Let [n] = {1, . . . , n} denote the set of tasks and [m] = {1, . . . , m} the set of machines.
One seeks for an assignment A : [n] → [m] of the tasks to the machines that is as
balanced as possible. The load of machine j ∈ [m] under assignment A is defined as

�j =
∑

i∈[n]
j=A(i)

wi

sj

.

The makespan is defined to be the maximum load over all machines. The objective is
to minimize the makespan. If all machines have the same speed, then the problem is
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known as makespan scheduling on identical machines, in which case we shall assume
s1 = s2 = · · · = sm = 1.

In computer science, load balancing is traditionally viewed as an algorithmic prob-
lem. We design and analyze algorithms, either centralized or distributed, that compute
the mapping A. Suppose, however, there is no global authority that can enforce an
efficient mapping of the tasks to the machines. For example, in a typical Internet appli-
cation, tasks might correspond to requests for downloading large files that users send
to servers. To maximize the quality of service, each of the users aims at contacting a
server with smallest load. This naturally leads to the following game theoretic setting
in which we will be able to analyze what happens to the makespan if there is no global
authority but selfish users aiming at maximizing their individual benefit decide about
the assignment of tasks to machines.

This chapter differs from the other chapters in Part III of this book in two important
aspects. At first, the considered objective function, the makespan, is nonutilitarian. At
second, our analysis does not only consider pure but also mixed equilibria. By using
the makespan as objective function, our analysis simultaneously captures the aspects of
efficiency and fairness. By considering mixed equilibria, our analysis explicitly takes
into account the effects of uncoordinated random behavior.

20.1.1 Load Balancing Games

We identify agents and tasks, i.e., task i ∈ [n] is managed by agent i. Each agent can
place its task on one of the machines. In other words, the set of pure strategies for an
agent is [m]. A combination of pure strategies, one for each task, yields an assignment
A : [n] → [m]. We assume that the cost of agent i under the assignment A corresponds
to the load on machine A(i), i.e., its cost is �A(i). The social cost of an assignment is
denoted cost(A) and is defined to be the makespan, i.e., cost(A) = maxj∈[m]

(
�j

)
.

Agents may use mixed strategies, i. e., probability distributions on the set of pure
strategies. Let p

j

i denote the probability that agent i assigns its task to machine j , i.e.,
p

j

i = P[A(i) = j ]. A strategy profile P = (pj

i )i∈[n],j∈[m] specifies the probabilities for
all agents and all machines. Clearly, every strategy profile P induces a random mapping
A. For i ∈ [n], j ∈ [m], let x

j

i be a random variable that takes the value 1 if A(i) = j

and 0, otherwise. The expected load of machine j under the strategy profile P is
thus

E[�j ] = E

⎡

⎣
∑

i∈[n]

wi x
j

i

sj

⎤

⎦ =
∑

i∈[n]

wi E[xj

i ]

sj

=
∑

i∈[n]

wi p
j

i

sj

.

The social cost of a strategy profile P is defined as the expected makespan, i.e.,

cost(P ) = E[cost(A)] = E

[
max
j∈[m]

(
�j

) ]
.

We assume that every agent aims at minimizing its expected cost. From point of view
of agent i, the expected cost on machine j , denoted by c

j

i , is c
j

i = E[�j |A(i) = j ].
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For any profile P ,

c
j

i = wi + ∑
k �=i wk p

j

k

sj

= E[�j ] + (1 − p
j

i ) · wi

sj

. (20.1)

In general, a strategy profile of a game is a Nash equilibrium if there is no incentive
for any agent to unilaterally change its strategy. For the load balancing game, such a
profile is characterized by the property that every agent assigns positive probabilities
only to those machines that minimize its expected cost. This is formalized as follows.

Proposition 20.1 A strategy profile P is a Nash equilibrium if and only if
∀i ∈ [n] : ∀j ∈ [m] : p

j

i > 0 ⇒ ∀k ∈ [m] : c
j

i ≤ ck
i .

The existence of a Nash equilibrium in mixed strategies is guaranteed by the theorem
of Nash, see Chapters 1 and 2. A strategy profile P is called pure if, for each agent,
there exists only one machine with positive probability. A Nash equilibrium in pure
strategies is called a pure Nash equilibrium. Applying the proposition above to pure
profiles and the corresponding assignments yields the following characterization of a
pure Nash equilibrium.

Proposition 20.2 An assignment A is a pure Nash equilibrium if and only if
∀i ∈ [n] : ∀k ∈ [m] : c

A(i)
i ≤ ck

i .

In words, an assignment is a pure Nash equilibrium if and only if no agent can
improve its cost by unilaterally moving its task to another machine. A special property
of load balancing games is that they always admit pure Nash equilibria.

Proposition 20.3 Every instance of the load balancing game admits at least
one pure Nash equilibrium.

proof An assignment A induces a sorted load vector (λ1, . . . , λm), where λj

denotes the load on the machine that has the j -th highest load. If an assignment is
not a Nash equilibrium, then there exists an agent i that can perform an improve-
ment step, i.e., it can decrease its cost by moving its task to another machine.
We show that the sorted load vector obtained after performing an improvement
step is lexicographically smaller than the one preceding it. Hence, a pure Nash
equilibrium is reached after a finite number of improvement steps.

Suppose, given any sorted load vector (λ1, . . . , λm), agent i performs an im-
provement step and moves its task from machine j to machine k where the indices
are with respect to the positions of the machines in the sorted load vector. Clearly,
k > j . The improvement step decreases the load on machine j and it increases the
load on machine k. However, the increased load on machine k is smaller than λj

as, otherwise, agent i would not decrease its cost. Hence, the number of machines
with load at least λj is decreasing. Furthermore, the loads on all other machines
with load at least λj are left unchanged. Consequently, the improvement step
yields a sorted load vector i.e. lexicographically smaller than (λ1, . . . , λm).
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Thus improvement steps naturally lead to a pure Nash equilibrium. This issue is
also discussed for a broader class of games, so-called potential games, in Chapter 19.
Let us remark that this convergence result implies that there exists even a pure Nash
equilibrium that minimizes the makespan. Given any optimal assignment, such an
equilibrium can be found by performing improvement steps until a Nash equilibrium
is reached because improvement steps do not increase the makespan. Thus, for load
balancing games with social cost equal to the makespan, it does not make much sense
to study the ratio between the social cost in a best Nash equilibrium and the optimal
social cost. This ratio is called the “price of stability.” It is studied in Chapters 17–19
in the context of other games. In this chapter, we are mainly interested in the ratio
between the social cost of the worst Nash equilibrium and the optimal social cost, the
so-called the “price of anarchy.”

20.1.2 Example of a Load Balancing Game

Suppose that there are two identical machines both of which have speed 1 and four tasks,
two small tasks of weight 1 and two large tasks of weight 2. An optimal assignment
would map a small and a large task to each of the machines so that the load on both
machines is 3. This assignment is illustrated in Figure 20.1(a).

Now consider an assignment A that maps the two large tasks to the first machine and
the two small tasks to the second machine as illustrated in Figure 20.1(b). This way, the
first machine has a load of 4 and the second machine has a load of 2. Obviously, a small
task cannot improve its cost by moving from the second to the first machine. A large
task cannot improve its cost by moving from the first to the second machine either as its
cost would remain 4 if it does. Thus assignment A constitutes a pure Nash equilibrium
with cost(A) = 4. Observe that all assignments that yield a larger makespan than 4
cannot be a Nash equilibrium as, in this case, one of the machines has a load of at least
5 and the other has a load of at most 1 so that moving any task from the former to the
latter would decrease the cost of this task. Thus, for this instance of the load balancing
game, the social cost of the worst pure Nash equilibrium is 4.

Clearly, the worst mixed equilibrium cannot be better than the worst pure equilibrium
as the set of mixed equilibria is a superset of the set of pure equilibria, but can it really
be worse? Suppose that each task is assigned to each of the machines with probability

(a) (b)

Figure 20.1. (a) Illustration of the optimal assignment of an instance of the load balancing
game with two large tasks of size 2 and two small tasks of size 1 as described in the example
given in Section 20.1.2. The social cost of this assignment is 3. (b) Illustration of a pure Nash
equilibrium for the same instance. The social cost of this assignment is 4, which is the maximum
among all pure Nash equilibria for this instance.
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1
2 . This corresponds to a strategy profile P with p

j

i = 1
2 for 1 ≤ i ≤ 4, 1 ≤ j ≤ 2. The

expected load on machine j is thus

E[�j ] =
∑

1≤i≤4

wi p
j

i = 2 · 2 · 1

2
+ 2 · 1 · 1

2
= 3.

It is important to notice that the expected cost of a task on a machine is larger than
the expected load of the machine, unless the task is assigned with probability 1 to this
machine. For example, if we assume that task 1 is a large task then Equation 20.1 yields

c1
1 = E[�1] + (1 − p1

1) w1 = 3 + 1

2
· 2 = 4,

and, if task 3 is a small task, then

c1
3 = E[�1] + (1 − p1

3) w3 = 3 + 1

2
· 1 = 3.5.

For symmetry reasons, the expected cost of each task under the considered strategy
profile P is the same on both machines so that P is a Nash equilibrium. The social cost of
this Nash equilibrium, cost(P ), is defined to be the expected makespan, E[cost(A)], of
the random assignment A induced by P . The makespan, cost(A), is a random variable.
This variable can possibly take one of the four values 3, 4, 5, or 6. There are 24 = 16
different assignments of four tasks to two machines. The number of assignments that
yield a makespan of 3 is 4, 4 is 6, 5 is 4, and 6 is 2. Consequently, the social cost of the
mixed Nash equilibrium is

cost(P ) = E[cost(A)] = 1

16
(3 · 4 + 4 · 6 + 5 · 4 + 6 · 2) = 4.25.

Thus mixed equilibria can, in fact, be worse than the worst pure equilibrium.

20.1.3 Definition of the Price of Anarchy

Not surprisingly, the example above shows that uncoordinated, selfish behavior can
lead to suboptimal assignments. We are interested in the ratio between the social cost
(makespan) of a worst-case Nash equilibrium, i.e., the Nash equilibrium with highest
social cost, and the social cost of an optimal assignment.

Definition 20.4 (Price of anarchy) For m ∈ N, let G(m) denote the set of all
instances of load balancing games with m machines. For G ∈ G(m), let Nash(G)
denote the set of all strategy profiles being a Nash equilibrium for G, and let
opt(G) denote the minimum social cost over all assignments. Then the price of
anarchy is defined by

PoA(m) = max
G∈G(m)

max
P∈Nash(G)

cost(P )

opt(G)
.

In the following, we study the price of anarchy in load balancing games in four
different variants in which we distinguish, as a first criterion, between games with
identical and uniformly related machines and, as a second criterion, between pure
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Nash equilibria and mixed Nash equilibria. Technically, when considering the price of
anarchy for load balancing games with identical machines then we restrict the set G(m)
to instances in which the m machines have all the same speed. When considering the
price of anarchy with respect to pure equilibria then the set Nash(G) refers only to pure
Nash equilibria rather than mixed equilibria; i.e., we take the maximum only among
pure equilibrium assignments rather than among possibly mixed equilibrium strategy
profiles.

The motivation behind studying the price of anarchy is to quantify the increase of
the social cost due to selfish behavior. With this motivation in mind, does it make
more sense to consider pure or mixed equilibria? If one wants to study a distributed
system in which agents repeatedly perform improvement steps until they reach a Nash
equilibrium, then pure equilibria are the right solution concept. However, there might
be other means by which agents come to a Nash equilibrium. In particular, if one views
load balancing games as one shot games, then mixed equilibria are a very reasonable
solution concept. Moreover, upper bounds about the price of anarchy for mixed equi-
libria are more robust than upper bounds for pure equilibria as mixed equilibria are
more general than pure ones. In this chapter, we consider both of these equilibrium
concepts. Our analysis begins with the study of pure equilibria as they are usually
easier to handle than mixed equilibria whose analysis requires a bit of probability
theory.

20.2 Pure Equilibria for Identical Machines

Our analysis of equilibria in load balancing games begins with the most basic case,
namely the study of pure equilibria on identical machines. Our first topic is the price
of anarchy. As a second topic, we investigate how long it takes until a pure Nash equi-
librium is reached when the agents repeatedly perform “best response” improvement
steps.

20.2.1 The Price of Anarchy

In case of pure equilibria and identical machines, the analysis of the price of anarchy
is quite similar to the well-known analysis of the greedy load balancing algorithm that
assigns the tasks one after the other in arbitrary order giving each task to the least
loaded machine. Graham (1966) has shown that the approximation factor of the greedy
algorithm is 2 − 1

m
. We show that the price of anarchy for pure equilibria is, in fact,

slightly better than the approximation factor of the greedy algorithm.

Theorem 20.5 Consider an instance G of the load balancing game with n tasks
of weight w1, . . . , wn and m identical machines. Let A : [n] → [m] denote any
Nash equilibrium assignment. Then, it holds that

cost(A) ≤
(

2 − 2

m + 1

)
· opt(G).
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proof Let j ∗ be a machine with the highest load under assignment A, and
let i∗ be a task of smallest weight assigned to this machine. Without loss of
generality, there are at least two tasks assigned to machine j ∗ as, otherwise,
cost(A) = opt(G) so that the upper bound given in the theorem follows trivially.
Thus wi∗ ≤ 1

2 cost(A).
Suppose there is a machine j ∈ [n] \ {j ∗} with load less than �j∗ − wi∗ . Then

moving the task i∗ from j ∗ to j would decrease the cost for this task. Hence, as
A is a Nash equilibrium, it holds

�j ≥ �j∗ − wi∗ ≥ cost(A) − 1

2
cost(A) = 1

2
cost(A).

Now observe that the cost of an optimal assignment cannot be smaller than the
average load over all machines so that

opt(G) ≥
∑

i∈[n] wi

m

=
∑

j∈[m] �j

m

≥ cost(A) + 1
2 cost(A)(m − 1)

m

= (m + 1)cost(A)

2m
.

As a consequence,

cost(A) ≤ 2m

m + 1
· opt(G) =

(
2 − 2

m + 1

)
· opt(G).

Observe that the example of a game instance with two identical machines given
in Section 20.1.2 has a price of anarchy of 4

3 = 2 − 2
m+1 , for m = 2. Exercise 20.2

generalizes this example. It shows that, for every m ∈ N, there exists an instance G

of the load balancing game with m identical machines and 2m tasks that has a Nash
equilibrium assignment A : [n] → [m] with

cost(A) =
(

2 − 2

m + 1

)
· opt(G).

Thus the upper bound on the price of anarchy given in Theorem 20.5 is tight.

20.2.2 Convergence Time of Best Responses

Our analysis about the price of anarchy leaves open the question of how agents may find
or compute a Nash equilibrium efficiently. In the existence proof for pure equilibria
in Proposition 20.3, we have implicitly shown that every sequence of improvement
steps by the agents leads to a Nash equilibrium. However, if players do not converge to
an equilibrium in reasonable time, then it might also not matter if the finally reached
equilibrium is good. This naturally leads to the question of how many improvement
steps are needed to reach a Nash equilibrium. The following result shows that, in case
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of identical machines, there is a short sequence of improvement steps that leads from
any given initial assignment to a pure Nash equilibrium. An agent is said to be satisfied
if it cannot reduce its cost by unilaterally moving its task to another machine. The max-
weight best response policy activates the agents one after the other always activating
an agent with maximum weight among the unsatisfied agents. An activated agent plays
a best response; i.e., the agent moves its task to the machine with minimum load.

Theorem 20.6 Let A : [n] → [m] denote any assignment of n tasks to m iden-
tical machines. Starting from A, the max-weight best response policy reaches a
pure Nash equilibrium after each agent was activated at most once.

proof We claim, once an agent i ∈ [n] was activated and played its best re-
sponse, it never gets unsatisfied again. This claim immediately implies the the-
orem. Our analysis starts with two observations both of which holding only for
identical machines. At first, we observe that an agent is satisfied if and only if its
task is placed on a machine on which the load due to the other tasks is minimal.
At second, we observe that a best response never decreases the minimum load
among the machines. As a consequence, a satisfied agent can get unsatisfied only
for one reason: the load on the machine holding its task increases because another
agent moves its task to the same machine. Suppose that agent k is activated after
agent i, and it moves its task to the machine holding task i. Let j ∗ denote the
machine on which i is placed and to which k is moved. For j ∈ [m], let �j denote
the load on machine j at the time immediately after the best response of agent k.
Since the assignment of k to j ∗ is a best response and as wk ≤ wi because of the
max-weight policy, it follows

�j∗ ≤ �j + wk ≤ �j + wi,

for all j ∈ [m]. Hence, after the best response of k, agent i remains satisfied
on machine j ∗ as it cannot reduce its cost by moving from j ∗ to any other
machine.

Let us remark that the order in which the agents are activated is crucial. For example,
if one would always activate an agent of minimum weight among the unsatisfied agents,
then there are instances of load balancing games on identical machines where one needs
an exponential number of best response steps to reach a pure Nash equilibrium (Even-
Dar et al., 2003).

20.3 Pure Equilibria for Uniformly Related Machines

We now switch from identical to uniformly related machines. First, we study the price
of anarchy. Then we discuss the complexity of computing equilibria.

20.3.1 The Price of Anarchy

The analysis in Section 20.2.1 shows that, in case of identical machines, the makespan
of a pure Nash equilibrium is less than twice the optimal makespan. In this section, we
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(a) (b)

c−1

c−2

c−3

c

 

Lc−1
Lc−2

Lc−3

q

k

k+1

k−1

Lk+1 Lk

Figure 20.2. (a) Illustration of the definition of the lists L c−1, L c−2, . . . , L 0 from the proof of
Theorem 20.7. (b) Illustration of the lists L k and L k+1 and the machine q used in the proof of
Lemma 20.8.

show that the makespan of pure equilibria on uniformly related machines can deviate
by more than a constant factor. The price of anarchy is bounded, however, by a slowly
growing function in the number of machines. Our analysis begins with an upper bound
on the price of anarchy followed by the presentation of a family of game instances that
match this upper bound up to a small constant factor.

Theorem 20.7 Consider an instance G of the load balancing game with n tasks
of weight w1, . . . , wn and m machines of speed s1, . . . , sm. Let A : [n] → [m]
denote any Nash equilibrium assignment. Then, it holds that

cost(A) = O
(

log m

log log m

)
· opt(G).

proof Let c = 	cost(A)/opt(G)
. We show c ≤ �−1(m), where �−1 denotes
the inverse of the gamma function, an extension of the factorial function with
the property that �(k) = (k − 1)!, for every positive integer k. This yields the
theorem as

�−1(m) = �

(
log m

log log m

)
.

Without loss of generality, let us assume s1 ≥ s2 ≥ · · · ≥ sm, and let L =
[1, 2, . . . , m] denote the list of machines in nonincreasing order of speed. For
k ∈ {0, . . . , c − 1}, let Lk denote the maximum length prefix of L such that the
load of each server in Lk is at least k · opt(G). Figure 20.2(a) illustrates this
definition. We will show the following recurrence on the lengths of these lists.

|Lk| ≥ (k + 1) · |Lk+1| (0 ≤ k ≤ c − 2)

|Lc−1| ≥ 1
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Solving the recurrence yields |L0| ≥ (c − 1)! = �(c). Now observe that L0 = L

and, hence, |L0| = m. Consequently, m ≥ �(c) so that c ≤ �−1(m), which proves
the theorem.

It remains to prove the recurrence. We first prove |Lc−1| ≥ 1. For the purpose
of a contradiction, assume that the list Lc−1 is empty. Then the load of machine
1 is less than (c − 1) · opt(G) in the equilibrium assignment A. Let i be a task
placed on a machine j with load at least c · opt(G). Moving i to machine 1 reduces
the cost of i to strictly less than

(c − 1) · opt(G) + wi

s1
≤ (c − 1) · opt(G) + opt(G) ≤ c · opt(G),

where the inequality wi

s1
≤ opt(G) follows from the fact that s1 is the speed of the

fastest machine. Consequently, agent i is able to unilaterally decrease its cost by
moving its task from machine j to machine 1, which contradicts the assumption
that A is a Nash equilibrium. Thus, we have shown that |Lc−1| ≥ 1.

Next, we show |Lk| ≥ (k + 1) · |Lk+1|, for 0 ≤ k ≤ c − 2. Let A∗ be an optimal
assignment, i.e., an assignment whose makespan is equal to opt(G). The following
lemma relates the placement of tasks in the equilibrium assignment A to the
placement of tasks in the optimal assignment A∗.

Lemma 20.8 Suppose i is a task with A(i) ∈ Lk+1. Then A∗(i) ∈ Lk .

proof If L \ Lk = ∅ then this claim follows trivially. Let q be the smallest
index in L \ Lk , i.e., machine q is one of the machines with maximum speed
among the machines L \ Lk . By the definition of the group Lk , the load of q is
less than k · opt(G), i.e., �q < k · opt(G). Figure 20.2(b) illustrates the situation.

By the definition of the groups, A(i) ∈ Lk+1 implies �A(i) ≥ (k + 1) · opt(G).
For the purpose of a contraction, assume wi ≤ sq · opt(G). Then moving task i to
machine q would reduce the cost of i to

�q + wi

sq

< k · opt(G) + opt(G) ≤ �A(i),

which contradicts the assumption that A is a Nash equilibrium. Hence, every
task i with A(i) ∈ Lk+1 satisfies wi > sq · opt(G). Now, for the purpose of a
contradiction, suppose A∗(i) = j and j ∈ L \ Lk . Then the load on j under A∗

would be at least

wi

sj

>
sq · opt(G)

sj

≥ opt(G)

because sj ≤ sq . However, this contradicts that A∗ is an optimal assignment.
Consequently, A∗(i) ∈ Lk .

By the definition of Lk+1, the sum of the weights that A assigns to a machine
j ∈ Lk+1 is at least (k + 1) · opt(G) · sj . Hence, the total weight assigned to the
machines in Lk+1 is at least

∑
j∈Lk+1

(k + 1) · opt(G) · sj . By Lemma 20.8 an
optimal assignment has to assign all this weight to the machines in Lk such that
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the load on each of these machines is at most opt(G). As a consequence,
∑

j∈Lk+1

(k + 1) · opt(G) · sj ≤
∑

j∈Lk

opt(G) · sj .

Dividing by opt(G) and subtracting
∑

j∈Lk+1
sj from both sides yields

∑

j∈Lk+1

k · sj ≤
∑

j∈Lk\Lk+1

sj .

Now let s∗ denote the speed of the slowest machine in Lk+1, i.e., s∗ = s|Lk+1|. For
all j ∈ Lk+1, sj ≥ s∗, and, for all j ∈ Lk \ Lk+1, sj ≤ s∗. Hence, we obtain

∑

j∈Lk+1

k · s∗ ≤
∑

j∈Lk\Lk+1

s∗,

which implies |Lk+1| · k ≤ |Lk \ Lk+1| = |Lk| − |Lk+1|. Thus, |Lk| ≥ (k + 1) ·
|Lk+1|. This completes the proof of Theorem 20.7.

We now prove a lower bound showing that the upper bound on the price of anarchy
given in Theorem 20.7 is essentially tight.

Theorem 20.9 For every m ∈ N, there exists an instance G of the load bal-
ancing game with m machines and n ≤ m tasks that has a Nash equilibrium
assignment A : [n] → [m] with

cost(A) = �

(
log m

log log m

)
· opt(G).

proof Recall the definition of the gamma function from the proof of Theo-
rem 20.7. We describe a game instance G together with an equilibrium assignment
A satisfying

cost(A) ≥ 1

2
· (

�−1(m) − 2 − o(1)
) · opt(G),

which yields the theorem.
Our construction uses q + 1 disjoint groups of machines denoted G0, . . . , Gq

with q ≈ �−1(m). More, precisely, we set

q = 	�−1(m/3) − 1
 ≥ �−1(m) − 2 − o(1).

For 0 ≤ k ≤ q, group Gk consists of q!/k! machines of speed 2k each of which
is assigned k tasks of weight 2k . Let us remark that 0! = 1. The total number of
machines in these groups is thus

q∑

k=0

|Gk| = q!
q∑

k=0

1

k!
≤ 3 �(q + 1) ≤ m

because
∑q

k=0
1
k! ≤ 3 and 3�(q + 1) ≤ m, which follows directly from the defi-

nition of q. As m might be larger than the number of the machines in the groups,
there might be some machines that do not belong to any of the groups. We assume
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that these machines have the same parameters as the machines in group G0; i.e.,
they have speed 20 = 1 and A does not assign a tasks to them.

We need to show that the described assignment is a Nash equilibrium. An agent
with a task on a machine from group Gk has cost k. It can neither reduce its cost
by moving its task to a machine in group Gj with j ≥ k as these machines have
at least a load of k, nor can it reduce its cost by moving its task to a machine in
group Gj with j < k as the load on such a machine, after the task moved to this
machine, would be

j + 2k

2j
= j + 2k−j ≥ j + (k − j + 1) = k + 1

since 2t ≥ t + 1, for every t ≥ 1. Hence, none of the agents can unilaterally
decrease its cost. In other words, A is a Nash equilibrium.

The social cost of the equilibrium assignment A is q. Next we show that
opt(G) ≤ 2 so that the theorem follows. We construct an assignment with load at
most 2 on every machine. For each k ∈ {1, . . . , q}, the tasks mapped by A to the
machines in group Gk are now assigned to the machines in group Gk−1. Observe
that the total number of tasks that A maps to the machines in Gk is

k · |Gk| = k · q!

k!
= q!

(k − 1)!
= |Gk−1|.

Hence, we can assign the tasks in such a way that each machine in group Gk−1

receives exactly one of the tasks that A mapped to a machine in group Gk . This
task has a weight of 2k and the speed of the machine is 2k−1. Hence, the load of
each machine in this assignment is at most 2, which completes the proof.

20.3.2 Algorithms for Computing Pure Equilibria

The proof of Proposition 20.3 reveals that, starting from any initial assignment, a pure
Nash equilibrium is reached after a finite number of improvement steps. Theorem 20.6
shows that there exists a sequence of improvement steps of length O(n) in case of
identical machines and this sequence can be computed efficiently. However, in the case
of uniformly related machines, it is not known whether there always exists a short se-
quence of improvement steps and whether such a sequence can be efficiently computed
like in the case of identical machines. However, the well-known LPT (largest process-
ing time) scheduling algorithm allows us to efficiently compute a Nash equilibrium.
This algorithm inserts the tasks in a nonincreasing order of weights, assigning each
task to a machine that minimizes the cost of the task at its insertion time.

Theorem 20.10 The LPT algorithm computes a pure Nash equilibrium for load
balancing games on uniformly related machines.

proof Let the tasks be numbered from 1 to n in the order of their insertion.
Let time t ∈ {0, . . . , n} denote the point of time after the first t tasks have been
inserted. We show by an induction that the partial assignment A : [t] → [m]
computed by LPT at time t is a Nash equilibrium. By our induction assumption
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the tasks 1, . . . , t − 1 are satisfied at time t − 1; i.e., none of these tasks can
improve its cost by a unilateral deviation. When task t is inserted, it might be
mapped to a machine j ∗ ∈ [m] that holds already some other tasks. We only have
to show that these tasks do not get unsatisfied because of the increased load on
j ∗ because of the assignment of task t . Let i < t be one of the tasks mapped to
machine j ∗. For j ∈ [m], let �j denote the load on machine j at time t . Since the
assignment of task t to machine j ∗ minimizes the cost of agent t and as wt ≤ wi ,

�j∗

sj∗
≤ �j + wt

sj

≤ �j + wi

sj

,

for all j ∈ [m]. Hence, also at time t , agent i is satisfied on machine j ∗ as it
cannot reduce its cost by moving from j ∗ to another machine.

The assignment computed by the LPT algorithm is not only a Nash equilibrium but
it also approximates the optimal makespan within a ratio of at most 5

3 for uniformly
related machines and 4

3 − 1
3m

for identical machines, see Friesen (1987) and Graham
(1966), respectively. As makespan scheduling is NP-hard even on identical machines,
one cannot hope for an efficient algorithm that computes an assignment with optimal
makespan, unless P �= NP. However, the polynomial time approximation scheme of
Hochbaum and Shmoys (1988) computes an assignment of tasks to uniformly related
machines minimizing the makespan within a ratio of (1 + ε), for any given ε > 0. This
assignment is not necessarily a Nash equilibrium. Feldmann et al. (2003a) present an
efficient algorithm that transforms any given assignment into an equilibrium assignment
without increasing the makespan. This approach is called Nashification. Combining
the polynomial time approximation scheme with the Nashification approach yields a
polynomial time algorithm that computes an equilibrium assignment for scheduling on
uniformly related machines minimizing the makespan within a factor of (1 + ε), for
any given ε > 0.

20.4 Mixed Equilibria on Identical Machines

The example with two identical machines presented in Section 20.1.2 shows that the
social cost can increase if players make use of randomization. Let us now study this
effect systematically. We analyze by how much the price of anarchy is increased
when the set of strategies is extended from pure to mixed strategies. First, we con-
sider an extreme case of randomization in which every agent randomizes over all
strategies.

20.4.1 Fully Mixed Equilibria

The support of an agent is the set of strategies to which the agent assigns positive
probability. In a fully mixed strategy profile all pure strategies are in the support of
every agent. There is exactly one fully mixed strategy profile for load balancing games
on identical machines i.e. a Nash equilibrium. In this fully mixed Nash equilibrium every
player assigns every task with probability 1

m
to each of the machines, i.e., P = (pj

i ) with

p
j

i = 1
m

, for every i ∈ [n] and j ∈ [m]. The fully mixed Nash equilibrium maximizes
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the randomization and, hence, seems to be a good candidate to study the effects of
randomization.

Our analysis begins with a particularly simple class of load balancing games: Sup-
pose that we have not only identical machines but also identical tasks. That is, we
assume that there are m machines of speed 1 and n tasks of weight 1. In the unique
fully mixed Nash equilibrium for such a game, each task is assigned to each machine
with probability 1

m
. This strategy profile is a Nash equilibrium as the expected cost c

j

i

of any task i on any machine j is the same. In particular, Equation 20.1 yields

c
j

i = E[�j ] +
(

1 − 1

m

)
= 2 − 1

m
.

This setup corresponds to a well-studied balls-and-bins experiment from probability
theory in which n balls are assigned independently, uniformly at random to m bins,
which is also discussed in Chapter 17. How bad is such a fully mixed Nash equilibrium
in comparison to an optimal assignment that distributes the tasks evenly among the ma-
chines? An optimal assignment minimizes the makespan, and the optimal makespan is
obviously  n

m
�. The expected makespan of the fully mixed strategy profile corresponds

to the expected maximum occupancy of the corresponding balls-and-bins experiment,
i.e., the expected number of balls in the fullest bin. The following proposition yields a
simple formula for this quantity that is exact up to constant factors for any choice of m

and n.

Proposition 20.11 Suppose that n ≥ 1 balls are placed independently, uni-
formly at random into m ≥ 1 bins. Then the expected maximum occupancy is

�

(
ln m

ln
(
1 + m

n
ln m

)
)

.

Let us illustrate the formula for the expected maximum occupancy given in the
proposition with a few examples. If n ≥ m log m, then the expected maximum occu-
pancy is �( n

m
) as, in this case, ln

(
1 + m

n
ln m

) = �
(

m
n

ln m
)
. If n ≤ m1−ε , for any

fixed ε > 0, then the expected maximum occupancy is � (1). Observe, in both of
these cases, the ratio between the expected makespan for the fully mixed equilib-
rium and the makespan of an optimal assignment is O(1). It turns out that this ratio
is maximized when setting m = n. In this case, the expected maximum occupancy
is � (log m/ log log m) while the optimal makespan is 1. This yields the following
result.

Theorem 20.12 For every m ∈ N, there exists an instance G of a load balancing
game with m identical machines and n = m tasks that has a Nash equilibrium
strategy profile P with

cost(P ) = �

(
log m

log log m

)
· opt(G).
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As the fully mixed Nash equilibrium is the equilibrium that maximizes the ran-
domization, one could guess that this is also the equilibrium that maximizes the ratio
between the expected makespan and the optimal makespan for load balancing games.
This guess is known as the so-called fully mixed Nash equilibrium conjecture. This
conjecture is appealing as it would yield a simple characterization of the worst-case
Nash equilibrium for load balancing games. Unfortunately, however, the conjecture is
wrong. With the help of Proposition 20.11, we can easily construct a counterexample.
Let m = 22k , for some k ∈ N. This way,

√
m as well as log m are integers. Now consider

the following instance of the load balancing game on m identical machines. Suppose
that there are

√
m large tasks of weight 1, and (m − √

m) · log m small tasks of weight
1

log m
. The balls-and-bins analysis above shows that the maximum number of large tasks

that are assigned to the same machine by a fully mixed Nash equilibrium is O(1), and
the maximum number of small tasks assigned to the same machine is O(log m). Hence,
the expected makespan of the fully mixed Nash equilibrium is O(1). Now consider
the following strategy profile: Assign the large tasks uniformly at random to the first√

m machines (called group A) and the small tasks uniformly at random to the other
machines (called group B). This profile is a Nash equilibrium as Equation 20.1 yields
that, for a large task, the expected cost on a machine of group A is less than the expected
cost on a machine of group B and, for a small task, the expected cost on a machine of
group B is less than the expected cost on a machine of group A. In this equilibrium,
the expected maximum occupancy among the large tasks is �( log m

log log m
), which shows

that there is a mixed Nash equilibrium whose expected makespan is larger than the
expected makespan of the fully mixed Nash equilibrium by a factor of �( log m

log log m
).

20.4.2 Price of Anarchy

The fully mixed Nash equilibrium is not necessarily the worst-case Nash equilibrium
for every instance of the load balancing game on identical machines. Nevertheless, the
following analysis shows that the lower bound on the price of anarchy that we obtained
from studying this kind of equilibria is tight.

Theorem 20.13 Consider an instance G of the load balancing game with n

tasks of weight w1, . . . , wn and m identical machines. Let P = (pj

i )i∈[n],j∈[m]

denote any Nash equilibrium strategy profile. Then, it holds that

cost(P ) = O
(

log m

log log m

)
· opt(G).

proof Without loss of generality, we assume that all machines have speed 1.
Recall that cost(P ) = E[maxj∈[m](�j )], i.e., cost(P ) corresponds to the expected
maximum load over all machines or, in other words, the expected makespan.
Our analysis starts with proving an upper bound on the maximum expected load
instead of the expected maximum load.

We claim that, for every j ∈ [m], E[�j ] ≤ (2 − 2
m+1 ) opt(G). The proof for

this claim follows the course of the analysis for the upper bound on the price of
anarchy for pure equilibria. More specifically, the proof of Theorem 20.5 can be
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adapted as follows to mixed equilibria: Instead of considering a smallest weight
task i∗ placed on a maximum load machine j ∗, one defines i∗ to be the smallest
weight task with positive probability on a machine j ∗ maximizing the expected
load. Also in all other occurrences one considers the expected load instead of the
load.

We conclude that the maximum expected load is less than 2 opt(G). Next we
show that the expected maximum load deviates at most by a factor of O( log m

log log m
)

from the maximum expected load. We use a weighted Chernoff bound in order to
show that it is unlikely that there is a machine that deviates by a large factor from
its expectation.

Lemma 20.14 (weighted Chernoff bound) Let X1, . . . , XN be independent
random variables with values in the interval [0, z] for some z > 0, and let
X = ∑N

i=1 Xi , then for any t it holds that P[
∑N

i=1 Xi ≥ t] ≤ (e · E[X] / t)t/z.

A description how to derive this and other variants of the Chernoff bound can be
found, e.g., in Mitzenmacher and Upfal (2005).

Fix j ∈ [m]. Let w denote the largest weight of any task. Applying the weighted
Chernoff bound shows that, for every t ,

P[�j ≥ t] ≤ min

{
1,

(
e · E[�j ]

t

)t/w
}

≤
(

2 e opt(G)

t

)t/opt(G)

.

because E[�j ] ≤ 2 opt(G) and w ≤ opt(G). Now let τ = 2 opt(G) ln m
ln ln m

. Then,
for any x ≥ 0,

P[�j ≥ τ + x] ≤
(

e ln ln m

ln m

)2 ln m/ ln ln m+x/opt(G)

≤
(

1√
ln m

)2 ln m/ ln ln m

· e−x/opt(G)

= m−1 · e−x/opt(G),

where the second inequality holds asymptotically as, for sufficiently large m,
ln m

e ln ln m
≥ √

log m and ln m
e ln ln m

≥ e.
Now with the help of the tail bound we can upper-bound cost(P ) as follows. For

every nonnegative random variable X, E[X] = ∫ ∞
0 P[X ≥ t]dt . Consequently,

cost(P ) = E

[
max
j∈[m]

�j

]
=

∫ ∞

0
P

[
max
j∈[m]

�j ≥ t
]
dt .

Substituting t by τ + x and then applying the union bound yields

cost(P ) ≤ τ +
∫ ∞

0
P

[
max
j∈[m]

�j ≥ τ + x
]
dx ≤ τ +

∫ ∞

0

∑

j∈[m]

P[�j ≥ τ + x] dx .
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Finally, we apply the tail bound derived above and obtain

cost(P ) ≤ τ +
∫ ∞

0
e−x/opt(G)dx = τ + opt(G) ,

which yields the theorem as τ = 2 opt(G) ln m
ln ln m

.

20.5 Mixed Equilibria on Uniformly Related Machines

Finally, we come to the most general case, namely mixed equilibria on uniformly related
machines. The following theorem shows that the price of anarchy for this case is only
slightly larger than the one for mixed equilibria on identical machines or pure equilibria
on uniformly related machines. The analysis combines the methods from both of these
more restricted cases: First, we show that the maximum expected makespan is bounded
by

O
(

log m

log log m

)
· opt(G)

using the same kind of arguments as in the analysis of the price of anarchy for pure
equilibria on uniformly related machines. Then, as in the case of mixed equilibria on
identical machines, we use a Chernoff bound to show that the expected maximum load
is not much larger than the maximum expected load. In fact, this last step loses only a
factor of order log log m/ log log log m, which results in an upper bound on the price
of anarchy of

O
(

log m

log log log m

)
.

After proving this upper bound, we present a corresponding lower bound by adding
some randomization to the lower bound construction for pure equilibria on uni-
formly related machines, which increases also the lower bound by a factor of order
log log m/ log log log m and, hence, yields a tight result about the price of anarchy.

Theorem 20.15 Consider an instance G of the load balancing game with n

tasks of weight w1, . . . , wn and m machines of speed s1, . . . , sm. Let P be any
Nash equilibrium strategy profile. Then, it holds that

cost(P ) = O
(

log m

log log log m

)
· opt(G).

proof As in the case of identical machines, our analysis starts with proving an
upper bound on the maximum expected load instead of the expected maximum
load. To simplify the notation, we assume opt(G) = 1, which can be achieved by
scaling the weights appropriately. Let c = ⌊

maxj∈[m]
(
E[�j ]

)⌋
. We first prove an

upper bound on c following the analysis for pure Nash equilibria in Theorem 20.7.
Without loss of generality, assume s1 ≥ s2 ≥ · · · ≥ sm. Let L = [1, 2, . . . , m]
denote the list of machines in non increasing order of speed. For k ∈ {0, . . . , c −
1}, let Lk denote the maximum length prefix of L such that the expected load
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of each server in Lk is at least k. Analogously to the analysis in the proof of
Theorem 20.7, one shows the recurrence |Lk| ≥ (k + 1) · |Lk+1|, for 0 ≤ k ≤ c −
2, and |Lc−1| ≥ 1. Solving the recurrence yields |L0| ≥ (c − 1)! = �(c). Thus,
|L0| = m implies c ≤ �−1(m) = � (ln m/ ln ln m). Now let

C = max

{
c + 1,

ln m

ln ln m

}
= �

(
ln m

ln ln m

)
.

In the rest of the proof, we show that the expected makespan of the equilibrium
assignment can exceed C at most by a factor of order ln ln m/ ln ln ln m so that
the expected makespan is O(ln m/ ln ln ln m), which proves the theorem as we
assume opt(G) = 1.

As the next step, we prove a tail bound on �j , for any fixed j ∈ [m] and, after-
ward, we use this tail bound to derive an upper bound on the expected makespan.
For a machine j ∈ [m], let T

(1)
j denote the set of tasks i with p

j

i ≥ 1
4 and T

(2)
j

the set of tasks i with p
j

i ∈ (0, 1
4 ). Let �

(1)
j and �

(2)
j denote random variables that

describe the load on link j only taking into account the tasks in T
(1)
j and T

(2)
j ,

respectively. Observe that �j = �
(1)
j + �

(2)
j . For the tasks in T

(1)
j , we immediately

obtain

�
(1)
j ≤

∑

i∈T
(1)
j

wi

sj

≤ 4
∑

i∈T
(1)
j

wi p
j

i

sj

= 4 E[� (1)
j ] ≤ 4C. (20.2)

To prove an upper bound on �
(2)
j , we use the weighted Chernoff bound from

Lemma 20.14. This bound requires an upper bound on the maximum weight.
As a first step to bound the weights, we prove a result about the relationship
between the speeds of the machines in the different groups that are defined by
the prefixes. For 0 ≤ k ≤ c − 2, let Gk = Lk \ Lk+1, and let Gc−1 = Lc−1. For
0 ≤ k ≤ c − 1, let s(k) denote the speed of the fastest machine in Gk . Clearly,
s(c − 1) ≥ s(c − 2) ≥ · · · ≥ s(1) ≥ s(0). We claim that this sequence is, in fact,
geometrically decreasing.

Lemma 20.16 For 0 ≤ k ≤ c − 4, s(k + 2) ≥ 2 s(k).

proof To prove the claim, we first observe that there exists a task j ∗ with
wj∗ ≤ s(k + 2) that has positive probability on a machine in Lk+3. This is because
an optimal assignment strategy has to move some of the expected load from the
machines in Lk+3 to machines in L \ Lk+3 and it can only assign those tasks
to machines in L \ Lk+3 whose weights are not larger than the maximum speed
among this set of machines, which is s(k + 2). Now suppose s(k) > 1

2s(k + 2).
The expected load of the fastest machine in Gk = Lk \ Lk+1 is at most k + 1.
Thus the expected cost of j ∗ on the fastest machine in Gk is at most

k + 1 + wj∗

s(k)
< k + 1 + 2wj∗

s(k + 2)
≤ k + 3.
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This contradicts that the expected cost of j ∗ in the considered Nash equilib-
rium is at least k + 3 as it has positive probability on a machine in Lk+3. Thus,
Lemma 20.16 is shown.

Now we apply Lemma 20.16 to prove an upper bound on the weights of the
tasks in the set T

(2)
j .

Lemma 20.17 For every j ∈ [m] and i ∈ T
(2)
j , wi ≤ 12 sj .

proof Let i be a task from T
(2)
j , i.e., pj

i ∈ (0, 1
4 ). Let j ∈ Gk , for 0 ≤ k ≤ c − 1.

The expected cost of i on j is

c
j

i = E[�j ] +
(

1 − p
j

i

) wi

sj

≥ k + 3wi

4sj

.

Suppose that k ≥ c − 3. In this case, wi > 12 sj implies c
j

i > k + 3
4 · 12 ≥ c + 6,

which contradicts that, under the Nash equilibrium profile, the expected cost of
any task on the fastest machine is at most c + 1. Hence, the lemma is shown for
k ≥ c − 3. Now suppose k ≤ c − 4. Let q denote the fastest machine from Gk+2.
Lemma 20.16 yields sq = s(k + 2) ≥ 2s(k) ≥ 2 sj . Hence, the expected cost of i

on q is

c
q

i = E[�q] + (
1 − p

q

i

) wi

sq

≤ k + 3 + wi

2sj

.

As p
j

i > 0, the Nash equilibrium condition yields c
j

i ≤ c
q

i . Consequently,

k + 3wi

4sj

≤ k + 3 + wi

2sj

,

which implies wi ≤ 12 sj and, hence, completes the proof of Lemma 20.17.

Let z = max
i∈T

(2)
j

(wi/sj ). Lemma 20.17 implies z ≤ 12. Now applying the
weighted Chernoff bound from Lemma 20.14 yields that, for every α > 0,

P[� (2)
j ≥ αC] ≤

(
e · E[� (2)

j ]

αC

)αC/z

≤
( e

α

)αC/12

since E[� (2)
j ] ≤ C. We define τ = 24 C ln ln m/ ln ln ln m. As C is of order

ln m/ ln ln m, it follows that τ is of order ln m/ ln ln ln m. Let x ≥ 0. We sub-
stitute τ + x for αC and obtain

P[� (2)
j ≥ τ + x] ≤

(
eC

τ + x

)(τ+x)/12

≤
(

e ln ln ln m

24 ln ln m

)2C ln ln m/ ln ln ln m+x/12

.
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Observe that 24 ln ln m/(e ln ln ln m) is lower-bounded by
√

ln ln m and also
lower-bounded by e2. Furthermore, C ≥ ln m/ ln ln m. Applying these bounds
yields

P[� (2)
j ≥ τ + x] ≤

(
1√

ln ln m

)2 ln m/ ln ln ln m

· e−x/6 = m−1 · e−x/6.

As a consequence,

E

[
max
j∈[m]

�
(2)
j

]
=

∫ ∞

0
P

[
max
j∈[m]

�
(2)
j ≥ t

]
dt

≤ τ +
∫ ∞

0
P

[
max
j∈[m]

�
(2)
j ≥ τ + x

]
dx

≤ τ +
∫ ∞

0

∑

j∈[m]

P[� (2)
j ≥ τ + x]dx.

Now applying our tail bound yields

E

[
max
j∈[m]

�
(2)
j

]
≤ τ +

∫ ∞

0
e−x/6dx = τ + 6. (20.3)

Finally, we combine Equations 20.2 and 20.3 and obtain

cost(P ) = E

[
max
j∈[m]

�j

]
≤ 4 C + τ + 6 = O(

log m

log log log m
),

which completes the proof of Theorem 20.15.

Next we show that the upper bound given in Theorem 20.15 is tight by showing
that for every number of machines there exists a game instance that matches the upper
bound up to a constant factor.

Theorem 20.18 For every m ∈ N, there exists an instance G of the load bal-
ancing game with m machines and n ≤ m tasks that has a Nash equilibrium
strategy profile P with

cost(P ) = �

(
log m

log log log m

)
· opt(G).

proof The starting point for our construction is the game and the Nash as-
signment A from the proof of Theorem 20.9. We use mixed strategies in only
one of the groups, namely in the group Gk with k = q/2�. Let M denote the
number of machines in this group, i.e., M = q!/k! ≥ (q/2)	q/2
. Observe that
log M = �(q log q) = �(log m).

Let T denote the set of tasks mapped by A to one of the machines in Gk .
The tasks in T have weight 2k . Each of these tasks is now assigned uniformly at
random to a machine group Gk , i.e., p

j

i = 1
M

, for each j ∈ Gk and each i ∈ T .
For all other tasks the strategy profile P corresponds without any change to the
pure strategy profile of assignment A. Observe that the randomization increases
the expected cost of the tasks. The expected cost of a task i ∈ T on a machine
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j ∈ Gk is now

c
j

i = E[�j ] +
(

1 − p
j

i

) wi

sj

= k +
(

1 − 1

M

)
< k + 1.

In the proof of Theorem 20.9, we have shown that the cost of a task i of weight 2k

on a machine of group Gj with j �= k is at least k + 1. Thus, the strategy profile
P is a Nash equilibrium.

It remains to compare the social cost of the equilibrium profile P with the
optimal cost. The structure of the optimal assignment is not affected by the
modifications. It has social cost opt(G) = 2. Now we give a lower bound for
the social cost of P . This social cost is, obviously, bounded from below by the
maximum number of tasks that are mapped to the same machine in the group
Gk . Applying Proposition 20.11 with M bins and N = kM balls shows that the
expected makespan is

�

(
ln M

ln
(
1 + 1

k
ln M

)
)

= �

(
log m

log log log m

)
,

where the last estimate holds as k = � (log m/ log log m) and log M = �(log m).
This completes the proof of Theorem 20.18.

20.6 Summary and Discussion

In this chapter, we studied the price of anarchy in load balancing games in four different
variants. Table 20.1 summarizes the results about the price of anarchy that we have
presented. In the case of pure equilibria on identical machines, the price of anarchy is
bounded from above by a small constant term. In all other cases, the price of anarchy
is bounded from above by a slowly growing, sublogarithmic function in the number of
machines. One might interpret these results as a first game theoretic explanation why
the resources in a large distributed system like the Internet that widely lacks global
control are shared in a more or less efficient and fair way among different users with
different interests, although the considered model is clearly oversimplifying in several
aspects.

It is an interesting coincidence that both the price of anarchy for pure equilibria
on uniformly related machines as well as the price of anarchy for mixed equilibria

Table 20.1. The price of anarchy for pure and
mixed equilibria in load balancing games on
identical and uniformly related machines

Identical Uniformly related

Pure 2 − 2
m+1 �

(
log m

log log m

)

Mixed �
(

log m

log log m

)
�

(
log m

log log log m

)
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on identical machines are of order log m/ log log m. Although both of these models
result in essentially the same price of anarchy, the reasons for the increase in the social
cost are quite different: In the case of pure equilibria on uniformly related machines,
equilibrium assignments correspond to local optima with respect to moves of single
tasks. That is, tasks are placed in a suboptimal but nevertheless coordinated fashion.
On the contrary, in case of mixed equilibria, the increase in cost is due to collisions
between uncoordinated random decisions. If one combines these two effects, then one
loses only another very small factor of order log log m/ log log log m, which results
in a price of anarchy of order log m/ log log log m for mixed equilibria on uniformly
related machines.

Obviously, the price of anarchy for load balancing games as we have defined them
in the beginning of this chapter is well understood. As mentioned above, however, this
model is very simplistic. To make these results more realistic, one needs to incorporate
other aspects from practical application areas like, e.g., more realistic cost functions or
other ways to define the social cost. We give pointers to studies of quite a few variants
of load balancing games in the bibliographic notes. In Christodoulou et al. (2004), it
is made an interesting attempt that adds an algorithmic or constructive element to the
analysis of the price of anarchy. The idea behind so-called “coordination mechanisms”
is not to study the price of anarchy for a fixed system, but to design the system in such
a way that the increase in cost or the loss in performance due to selfish behavior is as
small as possible. Similar aspects are also discussed in Chapter 17. We believe that
this is a promising direction of research that might result in practical guidelines of how
to build a distributed system that does not suffer from selfish behavior but might even
exploit the selfishness of the agents.

Besides the price of anarchy, we have studied the question of how agents reach a
Nash equilibrium. We have observed that any sequence of improvement steps reaches
a pure Nash equilibrium after a finite number of steps. In case of identical machines
the max-weight best-response policy reaches an equilibrium in only O(n). In case of
uniformly related machines, it is open whether there exists a short sequence of im-
provement steps that lead from any given assignment to a pure Nash equilibrium. We
think that this question is of great importance as Nash equilibria are only of interest
if agents can reach them quickly. It is not clear that the only reasonable approach for
the agents to reach a Nash equilibrium in a distributed way is to use improvement
steps. There might also be other, possibly more strategic or more coordinated behav-
ioral rules that quickly converge to a Nash equilibrium or to an approximate Nash
equilibrium. For example, Chapter 29 considers some approaches from evolutionary
game theory in the context of routing in networks. It is an interesting research prob-
lem to design distributed protocols that ensure that agents reach a Nash equilibrium
quickly. Pointers to first results toward this direction can be found in the bibliographic
notes.

20.7 Bibliographic Notes

The concept of the price of anarchy was introduced by Koutsoupias and Papadimitriou
(1999). In their seminal work, they study load balancing in form of a routing game
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consisting of two nodes connected by parallel edges with possibly different speeds.
Each agent has an amount of traffic that the agent seeks to map to one of the edges such
that the load on this edge is as small as possible. In our notation, the parallel edges
between the source and the sink correspond to the machines and the pieces of traffic
of the agents correspond to the tasks. Let us remark that originally the ratio between
the social cost in a worst-case Nash equilibrium and the optimal social cost was called
coordination ratio but in this chapter we switched to the now commonly used term
price of anarchy. The game theoretic model underlying the load balancing games is
also known as KP model.

The results presented in Table 20.1 have been obtained in the following studies.
The upper bound of 2 − 2

m+1 on the price of anarchy for pure equilibria in load
balancing games with identical machines goes back to the scheduling literature (Finn
and Horowitz, 1979), where the same ratio occurs in form of an approximation factor
for a local search optimization heuristic. The lower bound on the price of anarchy for
mixed equilibria on identical machines is presented in Koutsoupias and Papadimitriou
(1999). The analysis for the corresponding upper bound is obtained in Czumaj and
Vöcking (2002) and Koutsoupias et al. (2003). Let us remark that the analysis in
Czumaj and Vöcking (2002) is tight up to a constant additive term. It shows that the
price of anarchy for mixed equilibria in load balancing games on identical machines
is �−1(m) ± �(1). The upper and lower bounds on the price of anarchy for pure and
mixed equilibria in load balancing games with uniformly related machines are from
Czumaj and Vöcking (2002) as well. This work also contains a tight characterization
of the price of anarchy as a function of the ratio between the speeds of the fastest and
the slowest machine.

The existence proof for pure equilibria presented in Section 20.1.1 can be found in
Fotakis et al. (2002) and Even-Dar et al. (2003). The result from Section 20.3.2 that
the LPT algorithm computes a pure Nash equilibrium is presented in Fotakis et al.
(2002) together with several further results about the complexity of computing pure
and mixed equilibria in load balancing games. The uniqueness of the fully mixed Nash
equilibrium is shown in Mavronicolas and Spirakis (2001). Exercise 20.5 reworks the
nice proof for this result. The counterexample to the fully mixed Nash equilibrium
conjecture presented in Section 20.4.1 is from Fischer and Vöcking (2005). Finally,
the results from Section 20.2.2 about the convergence of best response sequences are
from Even-Dar et al. (2003).

Let us remark that this chapter does by far not give a complete overview of the rich
literature about different variants of games for load balancing or routing on parallel
links. We conclude this chapter with a few pointers to further literature. Load balancing
games with more general cost functions are considered, e.g., in Caragiannis et al. (2006),
Czumaj et al. (2002), Libman and Orda (1999, 2001). Other definitions of the social
cost are considered, e.g., in Caragiannis et al. (2006), Gairing et al. (2004a, 2004b) and
Suri et al. (2004). Another interesting variant of load balancing games assumes that
agents come with subsets of the machines on which they have to place their tasks. The
price of anarchy in such a restricted assignment model is investigated in Awerbuch et al.
(2003), Gairing et al. (2006), and Suri et al. (2004). The price of anarchy with respect
to equilibria that are robust against coalitions is studied in Andelman et al. (2007).
An important aspect that we have only touched in this chapter is the complexity of
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computing Nash equilibria for load balancing games. Further work dealing with the
computation of Nash equilibria can be found, e.g., in Even-Dar et al. (2003), Feldmann
et al. (2003a), Fotakis et al. (2002), Fischer and Vöcking (2005), and Gairing et al.
(2004a). Recent work deals also with the convergence time of distributed load balancing
processes in which agents make parallel attempts for improvement steps until they find
a Nash equilibrium (Berenbrink et al., 2006; Even-Dar and Mansour, 2005). Another
interesting topic is load balancing games with incomplete information that have been
considered, e.g., in Beier et al. (2004) and Gairing et al. (2005). Finally, let us remark
that the concept of coordination mechanisms has been suggested in Christodoulou
et al. (2004) and some further results on this topic can be found in Immorlica et al.
(2005).

Several other results for load balancing and routing on parallel links have been
collected in the surveys (Czumaj, 2004; Feldmann et al., 2003b; Koutsoupias, 2003).
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Exercises

20.1 Let G be any instance of the load balancing game with three tasks that should be
placed on two identical machines. Show that any pure Nash equilibrium for G is
optimal, i.e., cost(A) = opt(G) for any equilibrium assignment A.
Remark: Interestingly, the example presented in Section 20.1.2 that yields the
worst-case price of anarchy for two identical machines uses only four tasks.

20.2 Show, for every m ∈ N, there exists an instance G of the load balancing game
with m identical machines and 2m tasks that has a Nash equilibrium assignment
A : [n] → [m] with

cost(A) =
(

2 − 2
m + 1

)
· opt(G).

Hint: Generalize the example with two machines given in Section 20.1.2.

20.3 Prove that the price of anarchy for pure equilibria on instances of the load balancing
game with two tasks and two machines with possibly different speeds corresponds
to the golden ratio φ = 1

2 (1 + √
5). That is, show that

a) there is a game instance G admitting an equilibrium assignment A with
cost(A) = φ · opt(G).

b) for every game instance G and every equilibrium assignment A for this instance,
it holds cost(A) ≤ φ · opt(G).

20.4 Consider an instance of the load balancing game with two tasks both of which
have weight 1 and two machines, one of speed 1 and the other of speed s > 0.

(a) Show that there does not exist a fully mixed Nash equilibrium if s ≤ 1
2 or

s ≥ 2.
(b) Show that there exists a unique fully mixed Nash equilibrium if 1

2 < s < 2.
Describe the strategy profile of this equilibrium as a function of s.

20.5 Show that there exists at most one fully mixed Nash equilibrium for every instance
of the load balancing game.
Hint: Describe the conditions on the probabilities pj

i imposed by a fully mixed
Nash equilibrium in form of a system of linear equations and show that this system
has a unique solution. If all the values for the variables pj

i in this solution are
positive then the solution describes a fully mixed Nash equilibrium. Otherwise,
there does not exist a fully mixed equilibrium.

20.6 Suppose that we are given an instance G of the load balancing game with m
identical machines and n tasks whose weights are bounded from above by α ·
opt(G), for 0 < α < 1.

(a) Show that cost(A) < (1 + α) · opt(G), for every equilibrium assignment A.
(b) Let α = 1

log m . Show that cost(A) = O(opt(G)), for every equilibrium strategy
profile P .


